Saturday, September 17, 2016

CO2 Capture That Produces Electricity

Cornell Researchers Develop Process for CO2 Capture That Produces Electricity

Paper:  “The O2-assisted Al/CO2 electrochemical cell: A system for CO2 capture/conversion and electric power generation”, published in Science Advances.  Science Advances  20 Jul 2016: Vol. 2, no. 7, e1600968,  DOI: 10.1126/sciadv.1600968  
see link to the paper. 

Cornell University Prof. Lynden Archer, chemical and biomolecular engineering, the James A. Friend Family Distinguished Professor of Engineering, and Wajdi Al Sadat, graduate student, have created a cell which can use carbon dioxide and aluminum to produce electricity via electrochemical reactions.

The warmist-alarmists continue to claim that carbon dioxide capture and removal from the atmosphere is vital to preventing runaway global warming and a host of civilization-ending catastrophes.  They conveniently ignore the facts of zero warming occurring in the past 18 years, even with their manipulated temperature measurements.  

But, enterprising engineers work on processes to capture carbon dioxide, CO2.  Some processes require energy input to create the chemical reactants, such as sodium hydroxide that is used in the Skyonic company's patented SkyMine process.   This development by Archer and Al Sadat actually produces electricity while capturing CO2.  

The paper's abstract:

"Abstract


Economical and efficient carbon capture, utilization, and sequestration technologies are a requirement for successful implementation of global action plans to reduce carbon emissions and to mitigate climate change. These technologies are also essential for longer-term use of fossil fuels while reducing the associated carbon footprint. We demonstrate an O2-assisted Al/CO2 electrochemical cell as a new approach to sequester CO2 emissions and, at the same time, to generate substantial amounts of electrical energy. We report on the fundamental principles that guide operations of these cells using multiple intrusive electrochemical and physical analytical methods, including chronopotentiometry, cyclic voltammetry, direct analysis in real-time mass spectrometry, energy-dispersive x-ray spectroscopy, x-ray photoelectron spectroscopy, and coupled thermogravimetric analysis–Fourier transform infrared spectroscopy. On this basis, we demonstrate that an electrochemical cell that uses metallic aluminum as anode and a carbon dioxide/oxygen gas mixture as the active material in the cathode provides a path toward electrochemical generation of a valuable (C2) species and electrical energy. Specifically, we show that the cell first reduces O2 at the cathode to form superoxide intermediates. Chemical reaction of the superoxide with CO2 sequesters the CO2 in the form of aluminum oxalate, Al2(C2O4)3, as the dominant product. On the basis of an analysis of the overall CO2 footprint, which considers emissions associated with the production of the aluminum anode and the CO2 captured/abated by the Al/CO2-O2 electrochemical cell, we conclude that the proposed process offers an important strategy for net reduction of CO2 emissions."

This is one to watch. 

Roger E. Sowell, Esq.
Marina del Rey, California

copyright (c) 2016 by Roger Sowell, all rights reserved.

No comments: